示波器的使用 *** 有什么?示波器的按键使用 *** ?

bk2898 84 0

示波器的使用 *** 有什么?

示波器的使用 *** 有什么?
在使用前要进行一次能否工作的简单检查和进行扫描电路稳定度、垂直放大电路直流平衡的调整,检查完成后,首先根据被测信号频率的高低选择Y轴耦合方式,再根据被测信号的峰值选择Y轴灵敏度,接着选择触发信号来源与极性,然后根据被测信号周期选择扫描速度,最后输入被测信号即可。
拓展资料:
一、示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。
二、示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。
三、使用步骤
(1)先预调:反时针旋转辉度旋钮到底,竖直和水平位移转到中间,衰减置于更高档,扫描置于“外X档”;
(2)再开电源,指示灯亮后等待一两分钟进行预热后再进行相关的操作;
(3)先调辉度,再调聚焦,进而调水平和竖直位移使亮点在中心合适区域;
(4)调扫描、扫描微调和X增益,观察扫描;
(5)把外X档拔开到扫描范围档合适处,观察机内提供的竖直方向按正余弦规律变化的电压波形;
(6)把待研究的外加电压由Y输入和地间接入示波器,调节各档到合适位置,可观察到此电压的波形(与时间变化的图象)(调同步极性开关可使图象的起点从正半周或负半周开始;
(7)如欲观察亮斑(如外加一直流电压时)的竖直偏移,可把扫描调节到“外X”档。
(不同的示波器可能操作 *** 不同)

示波器针对毫伏及以下信号进行检测?

示波器的使用
一、实验目的
1. 学习示波器的使用 *** ;
2. 熟悉信号发生器的使用 *** ;
3. 初步掌握测量交流信号的幅度、周期及频率的 *** ;
二、实验原理
1. 用功率函数信号发生器作信号源使用,可以产生正弦波、三角波和方波等多种波形,且幅度、频率皆可调节。正弦信号的波形参数是峰峰值UP-P、周期T(或频率f)和初相;脉冲信号的波形参数是峰峰值UP-P、周期T及脉宽△。用示波器可以测量正弦波、方波、三角波等多种波形,测量正弦波时注意分清三种值:有效值、峰值、峰峰值及它们的关系。
测量矩形脉冲波形时,注意各参数的物理意义,如图3-1所示。

其中△表示脉冲宽度,UP-P表示脉冲峰峰值,为频率,T为脉冲周期。△与T的比值定义为占空比。
2. 电子示波器是一种信号图形观测仪器,可测出电信号的波形参数。从荧光屏的Y轴刻度尺并结合其量程分档选择开关(Y轴输入电压灵敏度V/div分档选择开关)读得电信号的幅值;从荧光屏的X轴刻度尺并结合其量程分档选择开关(时间扫描速度t/div分档),读得电信号的周期、脉宽、相位差等参数。为了完成对各种不同波形、不同要求的观察和测量,它还有一些其它的调节和控制旋钮,希望在实验中加以摸索和掌握。一台双踪示波器可以同时观察和测量两个信号的波形和参数。
用示波器进行电压测量,就是将被测电压信号输入给示波器,通过在荧光屏上的波形显示来进行定量或定性的分析。图3-2是用示波器测量信号发生器输出的测试电路,图中符号⊙为测试电缆线插头,其外圆是指与仪器外壳相连通的插口底座(与测试线的黑鱼夹连通),中间的小圆指信号发生器的输出端点或示波器的输入端点(与测试的红鱼夹连通)。接线时,要注意示波器、信号发生器的“共地”连接,即测试线的两黑鱼夹接在一起。
用示波器观测电流波形,可采用间接测量法。即测量被测支路中已知电阻上的电压,根据电阻电压与电流同相位的关系,而得到电流波形。若被测支路中无电阻元件,需要串接一个取样电阻r,如图3-3所示。为了减小取样对原电路的影响,通常取r<<|Z|。当使用示波器同时观察电路中两个信号时,要注意示波器CH1与CH2通道的接地端是相连的,图3-4为示波器同时测试u及i信号的实验电路。

三、实验内容与步骤
1. 示波器与信号发生器的使用
(1)双踪示波器的自检
将示波器面板部分的“标准信号”插口,通过示波器专用同轴电缆接至双踪示波器的Y轴输入插口YA或YB端,然后开启示波器电源,指示灯亮。稍后,协调地调节示波器面板上的“辉度”、“聚焦”、“辅助聚焦”、“X轴位移”、“Y轴位移”等旋钮,使在荧光屏的中心部分显示出线条细而清晰、亮度适中的方波波形;通过选择幅度和扫描速度,并将它们的微调旋钮旋至“校准”位置,从荧光屏上读出该“标准信号”的幅值与频率,并与标称值(1V,1kHz)作比较,如相差较大, 请指导老师给予校准。
(2)信号发生器输出电压幅值的测量。将信号发生器输出调为f=1kHz,波形选正弦波。使输出幅值分别为有效值0.1V,1V, 3V(由交流毫伏表读得)。调节示波器Y轴和X轴的偏转灵敏度至合适的位置,从荧光屏上读得幅值及周期,记入表3-1。
表3-1 信号发生器输出电压幅值的测量

分享相关内容的知识扩展阅读:

怎样利用示波器测信号的周期和振幅

一、周期法

1、对于任何周期信号,可以使用上述时间间隔测量 *** du首先确定每个周期的时间T,然后使用以下公式查找频率f:f = 1 / T。

2、例如示波器上显示的测量波形的周期为8格。 “ t / div”开关设置为“ 1 µs”位置,其“微调”设置为“校准”位置。然后,其周期和频率计算如下:T = 1us / div&TImes,8div = 8us,f = 1 / 8us = 125kHz因此,被测波形的频率为125kHz。

二、李沙育图形法测频率:

1、将示波器设置为XY工作模式,将测量信号输入到Y轴,将标准频率信号输入到“ X external”,然后慢慢改变标准频率,使这两个信号频率为整数倍,例如fx: fy = 1:2,将在荧光屏上形成稳定的李沙育图形。

2、李沙育图形的形状不仅与两个偏转电压的相位有关,而且与两个偏转电压的频率有关。跟踪 *** 可用于绘制具有不同频率比以及ux和uy之间的相位差不同的李沙育图形。

3、利用李沙育图形和频率之间的关系,可以进行精确的频率比较以确定被测信号的频率。 *** 是分别通过李沙育图形绘制水平线和垂直线。绘制的水平线不应穿过图形的相交点或与之相切。如果水平线与图的交点数为m,垂直线与图的交点数为n,则fy / fx = m / n

如何用示波器测量信号峰峰值,有效值,上升时间,下降时间等波形参数

一般来说,数字存储示波器都有自动测量这些参数的功能。比如,选择固纬的gds-2202数字存储示波器,如果不懂得这些参数,只要按一下help,详细的解释马上出来。

如果是数字示波器就可以直接从测量菜单里调出所需的各种参数;模拟示波器就要读刻度了,峰峰电压Vpp=V/div(垂直偏转因数) ×div(波形在垂直方向所占格数);

有效值等于峰峰电压除以二倍的根号二;上升时间要通过垂直偏转因数及增益微调,使波形的峰峰值落在0——100,读10%到90%所用的时间即可;下降时间读法一样。

求救多用表 示波器 怎么怎么读 快高考了 我一点都不懂

你是哪个省的呀?纵观30几年高考,没有哪一年的高考考到过示波器呀!万用表和示波器在大学的实验里倒是常用。我从大一到现在做的实验一直就是用这两样的。高考中最多也就是考到万用表,读法很简单。倒是是示波器不是很好读,你可以参照的这一段资料。
示波器:
.1 荧光屏

荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

1.2 示波管和电源系统

1.电源(Power)

示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

2.辉度(Intensity)

旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。

一般不应太亮,以保护荧光屏。

3.聚焦(Focus)

聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

1.3 垂直偏转因数和水平偏转因数

1.垂直偏转因数选择(VOLTS/DIV)和微调

在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。

踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。

每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。

在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

2.时基选择(TIME/DIV)和微调

时基选择和微调的使用 *** 与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。

“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于 2μS×(1/10)=0.2μS

TDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。

示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。

示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。

1.4 输入通道和输入耦合选择

1.输入通道选择

输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到

示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。

2.输入耦合方式

输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。

2.5 触发

之一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作 *** 是十分重要的。

1.触发源(Source)选择

要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。

内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。

电源触发使用交流电源频率信号作为触发信号。这种 *** 在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。

外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。

正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。

2.触发耦合(Coupling)方式选择

触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。

AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。

直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。

低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。

3.触发电平(Level)和触发极性(Slope)

触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(Hold Off)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同步。

极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。

2.6 扫描方式(SweepMode)

扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。

自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。

常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。

单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。

上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的,真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些

抱歉,评论功能暂时关闭!